Journal of Organometallic Chemistry, 414 (1991) C33 Elsevier Sequoia S.A., Lausanne

Book Review

Reagents for Transition Metal Complex and Organometallic Syntheses, Inorganic Syntheses, Vol. 28; edited by R.J. Angelici (Department of Chemistry, Iowa State University), Wiley Interscience, New York, 1990, 463 pages, £43.65. ISBN 0-471-52619-3

This volume of *Inorganic Syntheses* brings together in one book a range of syntheses which the editor considers to be of "basic starting materials". There are nine totally new contributions and 81 others taken from earlier volumes of *Inorganic Syntheses*. As usual a contribution consists of a critical survey of possible synthetic methods and detailed procedures for several related compounds. For the contributions from earlier volumes the original authors were asked to update their entries, make modifications where necessary, and add safety notes. If the modifications were substantial the new experimental procedures were independently checked, as were all the new syntheses.

The contributions are grouped into chapters as follows: compounds with weakly coordinated ligands (tetrafluoroborate, triflate, nitriles, dinitrogen and dienes); low-valent complexes of Rh, Ir, Ni, Pd, and Pt; substituted metal carbonyl anion complexes; metal cluster compounds (of Ru and Os); cyclopentadienyl complexes (of early transition metals, Co, and Rh); lanthanide and actinide complexes; ligands and other transition metal complexes. This last chapter contains entries not easily fitted in elsewhere, e.g. PMe₃, PF₃, C₅H₅Tl, C₅Me₅H, anhydrous metal chlorides, tungsten chloro phosphine complexes, [Ru(bipy)₃]Cl₂ · 6H₂O, π -allyl and COD complexes of Pt and Pd, and Zeise's salt.

Almost anyone who wishes to break new ground in the coordination or organometallic chemistry of transition metals will have to make compounds described in this book, which is thus likely to be widely acquired for use in research laboratories. The procedures are already known to be reliable and authoritative and this collection will be a standard reference work for many years.

School of Chemistry and Molucular Sciences, University of Sussex, Brighton BN1 9QJ (UK) J.D. Smith

Erratum

Re: Manganese carbonyl and organometallic compounds: analysis and classification of crystallographic and structural data; by C.E. Holloway and M. Melnik (J. Organomet. Chem., 396 (1990) 129).

We regret that Table 6 is missing from this paper as printed; the table is reproduced below.

carbonyl compounds ^a
hetero-binuclear
a for
structural dat
and s
Crystallographic
Table 6

Compound	Crystal Class	Space Group	N	a[pm] b[pm] c[pm]	a[°] B[°]	Chromo- phore	M-L [mg]		L-Mn-L L-Mn-L' [°]	Ref
(OC) _s MnHg{N ₃ (2-ClC ₈ H ₄) ₂ }	tr	ĿĿ	67	723(1) 1048(1) 1375(1)	$103.4(1) \\ 92.0(1) \\ 101.1(1)$	MnC _s Hg (DC ^b not Hg 255.	given 2(1)		96
(OC) _n MnSiH _a ^C						MnC ₅ Si	OC 184. Si 240.	1(2) 7(5)	94.5(2)	26
(UC) _a MnGeH _a ^C						MnCsGe	OC 184.5	9(2)	97(2)	70
(OC) ₅ MnGeBr ^C						MnC ₅ Ge	Ge 243()	(2)	95 84.5(5)	38
(OC) _n MnGe(CF ₁) _n	E	P2,/n	4	$\begin{array}{c} 1450.9(3) \\ 1274.9(2) \\ 825.25(8) \end{array}$	92.128(8)	MnC ₅ Ge	OC 186.1 Ge 241.3	3(6,2) 32(9)	90.7(2,1.7),176.8(2,7) 88.6(2,2.1),176.9(2)	66
{Me ₂ As(CH ₂) ₃ AsMe ₂ }(OC) ₃ Mn .GeCl ₃	Ħ	P2,/n	v	$\begin{array}{c} 821.5(3)\\ 1427.9(7)\\ 1678.7(8)\end{array}$	90.46(1)	MnC _a As ₂ Ge	OC 178(As 241.1 Ge 238.1	2,1) 5(3,1) 1(3)	р(1,7)б	100
(OC) _s MnSnCl _a ^e	E	P2,/c	00	1410(1) 1338(5) 1397(9)	97.39(21)	MnC ₅ Sn	OC 187.1 Sn 257.1	5(44,97) 5(5)	90.7(20,3.2),177.3(18,1.1) 88.7(14,1.7),175.0(14)	101(
(00), Mn(dmn), PdRn ^f	Ē	ć	-	1011 7/01		MnC _s Sn	OC 187. Sn 260.	1(33,42) 1(5)	91.4(15,3.8),174.3(15,1.3 86.8(11,2.2),178.2(12)	~
	E	}	M	1341.2(2) 2101.3(4)	117.5(1)	MnC.,P.,Pd	OC 179(. P 226.5 PD 281.0	(1,17) ((3,11)) ((2))	not given	102
a-Br(CO) _a Mn ¹ (triphos)Cr(CO) _b	or	Pben	x 0	2126.0(6) 1445.1(3) 2833.8(9)		MnC _a P _z Br	OC 165(P 231. Br 253.7	1,5) 5(13,14) 7(8)	90(2,2) ^E ,	103

Table 6. cont. (2)											
Compound	Crystal Class	Space Group	2	a[pm] b[pm] c[pm]	α[°] β[º] [°]	Chromo- phore	[md] M~L		[md]	L-Mn-L L-Mn-L [°]	Ref
B-Br(CO) _a Mn¹(tripbos)Cr ⁰ (C .CH₂Cl₂	т	ő	4	2443(3) 1076(1) 1742(2)	89.11(3)	MnCaP2Br	OC 182(2, P 235.8(Br 253.4(,9) 7,12) 4)	90(1,3) [£] "		103
(OC) ₄ Mn(PPh ₂)Fe(CO) ₄	or	Pbcn	00	1676.8(9) 1702.0(9) 1535.9(8)		MnC4PFe	OC not gi P not gi Fe 282.5(ven ven 5)			104
(Ph _a P)(CO) ₄ Mn(AsMe ₂). .Fe(CO) ₄	n O	Pbca	00	1535.1(10) 1508.6(2) 1690.3(3)		MnC.PAs	OC 184(1, P 234.5(As 251.0(533	91.8(5,6.0),	170.4(5) ^h '	105
(Ph ₃ P)(CO) ₄ Mn(AsMe ₂). .Fe(CO) ₄	or	Pca2,	۲	1537.0(1) 1019.0(2) 1331.8(3)		MnC4PAs	OC 186(1, P 228.3(As 246.2(2) 2) 2)	90.0(6,1.2),	177.6(6,1,4) ^h 2	105
[(OC) ₄ Mn(AsMe ₂) ₂ Fe(CO) ₄] .[Cl(CO) ₄ Mn(AsMe ₂)Fe(CO)	m [*]	P2,	2	896.4(5) 1343.9(2)	99,40(4)	MnC ₄ As ₂	OC 177-18 As 241-24	14(3) 14(2)			106
				(4)6.1061		MnC4AsCl	OC 178-18 As 248(1) Cl 241(2)	(2(3)			
(UC) _a Mn(μ-H)(μ,μ'-dtal) .Fe(CO) ₂	E	P2,/a	4	2199.6(2) 685.8(1) 1554.6(5)	110.20(1)	MnC ₃ N ₃ HFe	OC 180.1(N 202.9(H 170(6) Fe 253.93	6,1) 5,0) (9)	89.4(3,1.6) ¹		107
(OC) _s MnRe(CO),	Ξ	12/a	4	1440(4) 714(1) 1478(1)	105.4(1)	MnC.,Re	OC not gri Re 296	ven			10 8 a

(2)
cont.
6,
Table

C35

Compound	Crystal Class	Space Z Group	a[pm] b[pm] c[pm]	a[°] ß[°]	Chromo- phore	[шd]	السال-1, hur-1, L-Mu-L [10] [10]	kef
(OC) _s MnRe(CO) _s	11	12/u 4	1439.0(4) 711.2(2) 1473.6(3)	105.54(2)	MnCsRe	OC 191.7(9,18) Re 290.9(1)	91.4(4,3.6),173.9(3,2.1) 87.1(2,2.2),172.2(3)	1085
Mn(CO)s(OTeFs)	аr	Pna2, 4	1246.2(3) 761.2(2) 1253.9(2)		MnC ₆ 0	OC 189(1,7) D 204(1)	not given	601
The mean value for deviation from the b The chemical identic By electron diffrac d The value of C-Mn As-Mn-Ge = 91.0(1, c There arc two cryst f At 269K. The value of C-Mn g. The value of C-Mn p-Mn-Br = 87.6(2, h, The values of C-Mi h, The value of C-Mi h, 29.7.2-88.	 " chemically ide mean. " coordination in the gas -C angle; C-Mr 2)⁹. 2)¹⁰. <li2)<sup>10. 2)¹⁰. 2)¹⁰. <l< td=""><td>ntical angle ed atom or phase. 1-As = 89.3 1-Ps = 83.2 (2,3 1-P = 93.2 (1-P = 93.2 (1-P = 93.2 (1-P = 93.2 (1)^o; CJ-M Mr-P = 91. (1)^o; CJ-M Mr-P = 85.5 (1)^o; CJ-M</td><td><pre>e or distance. ligand. ((5,1.3) and 1 ((5,1.3) and 1 ((5,1.3) and 1 7,1.6) and 1 7,1.6) and 1 7,1.6) and 1 1((4,2.1)°, C- = 88.2-103 and 1 32,6-9 a = 83.5-9 = 28.60171 6</pre></td><td>The first 78.8(5,3)°; 78.8(5,3)°; 6.3(8,1)°; 6.3(8,1)°; 73.4(4)°; 73.4(4)°; 73.3(5)° and 3.3(5)° and .8(5)° and .8(22)°; C- Mn-Fac</td><td>rumber in p C-Mn-Ge = C-Mn-Ge = C-Mn-B(2,2) C-Mn-Br = 8 -Mn-As = 87 -0(4,2,9)°; (170.1-174.4(1)) (174.6(5)°; Mn-N = 98.(1)</td><td>B8.5(5,2) and 179.1 B8.5(5,2) and 179.1 B8.5(5,2) and 179.1 and 178(2)$^{\circ}$; P-Mn-F 19.1(7,2.5) and 177.4 As-Mn-P = 177.3(1)$^{\circ}$ 7)$^{\circ}$; C-M-As = 85.0 7)$^{\circ}$; C-M-As = 85.0 10°; Fo-Mn-H = 46.2(6)$^{\circ}$</td><td>s.d. and the second is the r (5)°; As-Mn-As = 91.2(1)°; $= 83.9(4)^{\circ}$; P-Mn-Br = 87.7($4(7)^{\circ}$; P-Mn-P = 83.9(4)°; $(4)^{\circ}$; As-Mn-P = 96.52(9)°. $(4)^{\circ}$; As-Mn-P = 96.52(9)°. $(3)^{\circ}$; C-Mn-Fc = 117.5(2,8) $(3)^{\circ}$; C-Mn-Fc = 117.5(2,8)</td><td>.3,2.7)°.</td></l<></li2)<sup>	ntical angle ed atom or phase. 1-As = 89.3 1-Ps = 83.2 (2,3 1-P = 93.2 (1-P = 93.2 (1-P = 93.2 (1-P = 93.2 (1) ^o ; CJ-M Mr-P = 91. (1) ^o ; CJ-M Mr-P = 85.5 (1) ^o ; CJ-M	<pre>e or distance. ligand. ((5,1.3) and 1 ((5,1.3) and 1 ((5,1.3) and 1 7,1.6) and 1 7,1.6) and 1 7,1.6) and 1 1((4,2.1)°, C- = 88.2-103 and 1 32,6-9 a = 83.5-9 = 28.60171 6</pre>	The first 78.8(5,3)°; 78.8(5,3)°; 6.3(8,1)°; 6.3(8,1)°; 73.4(4)°; 73.4(4)°; 73.3(5)° and 3.3(5)° and .8(5)° and .8(22)°; C- Mn-Fac	rumber in p C-Mn-Ge = C-Mn-Ge = C-Mn-B(2,2) C-Mn-Br = 8 -Mn-As = 87 -0(4,2,9)°; (170.1-174.4(1)) (174.6(5)°; Mn-N = 98.(1)	B8.5(5,2) and 179.1 B8.5(5,2) and 179.1 B8.5(5,2) and 179.1 and 178(2) $^{\circ}$; P-Mn-F 19.1(7,2.5) and 177.4 As-Mn-P = 177.3(1) $^{\circ}$ 7) $^{\circ}$; C-M-As = 85.0 7) $^{\circ}$; C-M-As = 85.0 10°; Fo-Mn-H = 46.2(6) $^{\circ}$	s.d. and the second is the r (5)°; As-Mn-As = 91.2(1)°; $= 83.9(4)^{\circ}$; P-Mn-Br = 87.7($4(7)^{\circ}$; P-Mn-P = 83.9(4)°; $(4)^{\circ}$; As-Mn-P = 96.52(9)°. $(4)^{\circ}$; As-Mn-P = 96.52(9)°. $(3)^{\circ}$; C-Mn-Fc = 117.5(2,8) $(3)^{\circ}$; C-Mn-Fc = 117.5(2,8)	.3,2.7)°.

Table 6, cont. (3)